3.7.33 \(\int \frac {x (a+b x^2)^2}{(c+d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=73 \[ -\frac {2 b \sqrt {c+d x^2} (b c-a d)}{d^3}-\frac {(b c-a d)^2}{d^3 \sqrt {c+d x^2}}+\frac {b^2 \left (c+d x^2\right )^{3/2}}{3 d^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {444, 43} \begin {gather*} -\frac {2 b \sqrt {c+d x^2} (b c-a d)}{d^3}-\frac {(b c-a d)^2}{d^3 \sqrt {c+d x^2}}+\frac {b^2 \left (c+d x^2\right )^{3/2}}{3 d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*x^2)^2)/(c + d*x^2)^(3/2),x]

[Out]

-((b*c - a*d)^2/(d^3*Sqrt[c + d*x^2])) - (2*b*(b*c - a*d)*Sqrt[c + d*x^2])/d^3 + (b^2*(c + d*x^2)^(3/2))/(3*d^
3)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{3/2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {(a+b x)^2}{(c+d x)^{3/2}} \, dx,x,x^2\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {(-b c+a d)^2}{d^2 (c+d x)^{3/2}}-\frac {2 b (b c-a d)}{d^2 \sqrt {c+d x}}+\frac {b^2 \sqrt {c+d x}}{d^2}\right ) \, dx,x,x^2\right )\\ &=-\frac {(b c-a d)^2}{d^3 \sqrt {c+d x^2}}-\frac {2 b (b c-a d) \sqrt {c+d x^2}}{d^3}+\frac {b^2 \left (c+d x^2\right )^{3/2}}{3 d^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 65, normalized size = 0.89 \begin {gather*} \frac {-3 a^2 d^2+6 a b d \left (2 c+d x^2\right )+b^2 \left (-8 c^2-4 c d x^2+d^2 x^4\right )}{3 d^3 \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*x^2)^2)/(c + d*x^2)^(3/2),x]

[Out]

(-3*a^2*d^2 + 6*a*b*d*(2*c + d*x^2) + b^2*(-8*c^2 - 4*c*d*x^2 + d^2*x^4))/(3*d^3*Sqrt[c + d*x^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 71, normalized size = 0.97 \begin {gather*} \frac {-3 a^2 d^2+12 a b c d+6 a b d^2 x^2-8 b^2 c^2-4 b^2 c d x^2+b^2 d^2 x^4}{3 d^3 \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x*(a + b*x^2)^2)/(c + d*x^2)^(3/2),x]

[Out]

(-8*b^2*c^2 + 12*a*b*c*d - 3*a^2*d^2 - 4*b^2*c*d*x^2 + 6*a*b*d^2*x^2 + b^2*d^2*x^4)/(3*d^3*Sqrt[c + d*x^2])

________________________________________________________________________________________

fricas [A]  time = 1.56, size = 79, normalized size = 1.08 \begin {gather*} \frac {{\left (b^{2} d^{2} x^{4} - 8 \, b^{2} c^{2} + 12 \, a b c d - 3 \, a^{2} d^{2} - 2 \, {\left (2 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{3 \, {\left (d^{4} x^{2} + c d^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

1/3*(b^2*d^2*x^4 - 8*b^2*c^2 + 12*a*b*c*d - 3*a^2*d^2 - 2*(2*b^2*c*d - 3*a*b*d^2)*x^2)*sqrt(d*x^2 + c)/(d^4*x^
2 + c*d^3)

________________________________________________________________________________________

giac [A]  time = 0.45, size = 92, normalized size = 1.26 \begin {gather*} -\frac {b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}}{\sqrt {d x^{2} + c} d^{3}} + \frac {{\left (d x^{2} + c\right )}^{\frac {3}{2}} b^{2} d^{6} - 6 \, \sqrt {d x^{2} + c} b^{2} c d^{6} + 6 \, \sqrt {d x^{2} + c} a b d^{7}}{3 \, d^{9}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

-(b^2*c^2 - 2*a*b*c*d + a^2*d^2)/(sqrt(d*x^2 + c)*d^3) + 1/3*((d*x^2 + c)^(3/2)*b^2*d^6 - 6*sqrt(d*x^2 + c)*b^
2*c*d^6 + 6*sqrt(d*x^2 + c)*a*b*d^7)/d^9

________________________________________________________________________________________

maple [A]  time = 0.01, size = 69, normalized size = 0.95 \begin {gather*} -\frac {-b^{2} x^{4} d^{2}-6 a b \,d^{2} x^{2}+4 b^{2} c d \,x^{2}+3 a^{2} d^{2}-12 a b c d +8 b^{2} c^{2}}{3 \sqrt {d \,x^{2}+c}\, d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x)

[Out]

-1/3*(-b^2*d^2*x^4-6*a*b*d^2*x^2+4*b^2*c*d*x^2+3*a^2*d^2-12*a*b*c*d+8*b^2*c^2)/(d*x^2+c)^(1/2)/d^3

________________________________________________________________________________________

maxima [A]  time = 0.84, size = 115, normalized size = 1.58 \begin {gather*} \frac {b^{2} x^{4}}{3 \, \sqrt {d x^{2} + c} d} - \frac {4 \, b^{2} c x^{2}}{3 \, \sqrt {d x^{2} + c} d^{2}} + \frac {2 \, a b x^{2}}{\sqrt {d x^{2} + c} d} - \frac {8 \, b^{2} c^{2}}{3 \, \sqrt {d x^{2} + c} d^{3}} + \frac {4 \, a b c}{\sqrt {d x^{2} + c} d^{2}} - \frac {a^{2}}{\sqrt {d x^{2} + c} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)^2/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

1/3*b^2*x^4/(sqrt(d*x^2 + c)*d) - 4/3*b^2*c*x^2/(sqrt(d*x^2 + c)*d^2) + 2*a*b*x^2/(sqrt(d*x^2 + c)*d) - 8/3*b^
2*c^2/(sqrt(d*x^2 + c)*d^3) + 4*a*b*c/(sqrt(d*x^2 + c)*d^2) - a^2/(sqrt(d*x^2 + c)*d)

________________________________________________________________________________________

mupad [B]  time = 0.67, size = 75, normalized size = 1.03 \begin {gather*} \frac {b^2\,{\left (d\,x^2+c\right )}^2-3\,a^2\,d^2-3\,b^2\,c^2-6\,b^2\,c\,\left (d\,x^2+c\right )+6\,a\,b\,d\,\left (d\,x^2+c\right )+6\,a\,b\,c\,d}{3\,d^3\,\sqrt {d\,x^2+c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*x^2)^2)/(c + d*x^2)^(3/2),x)

[Out]

(b^2*(c + d*x^2)^2 - 3*a^2*d^2 - 3*b^2*c^2 - 6*b^2*c*(c + d*x^2) + 6*a*b*d*(c + d*x^2) + 6*a*b*c*d)/(3*d^3*(c
+ d*x^2)^(1/2))

________________________________________________________________________________________

sympy [A]  time = 1.29, size = 155, normalized size = 2.12 \begin {gather*} \begin {cases} - \frac {a^{2}}{d \sqrt {c + d x^{2}}} + \frac {4 a b c}{d^{2} \sqrt {c + d x^{2}}} + \frac {2 a b x^{2}}{d \sqrt {c + d x^{2}}} - \frac {8 b^{2} c^{2}}{3 d^{3} \sqrt {c + d x^{2}}} - \frac {4 b^{2} c x^{2}}{3 d^{2} \sqrt {c + d x^{2}}} + \frac {b^{2} x^{4}}{3 d \sqrt {c + d x^{2}}} & \text {for}\: d \neq 0 \\\frac {\frac {a^{2} x^{2}}{2} + \frac {a b x^{4}}{2} + \frac {b^{2} x^{6}}{6}}{c^{\frac {3}{2}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x**2+a)**2/(d*x**2+c)**(3/2),x)

[Out]

Piecewise((-a**2/(d*sqrt(c + d*x**2)) + 4*a*b*c/(d**2*sqrt(c + d*x**2)) + 2*a*b*x**2/(d*sqrt(c + d*x**2)) - 8*
b**2*c**2/(3*d**3*sqrt(c + d*x**2)) - 4*b**2*c*x**2/(3*d**2*sqrt(c + d*x**2)) + b**2*x**4/(3*d*sqrt(c + d*x**2
)), Ne(d, 0)), ((a**2*x**2/2 + a*b*x**4/2 + b**2*x**6/6)/c**(3/2), True))

________________________________________________________________________________________